21 research outputs found

    Deep learning-based signal processing approaches for improved tracking of human health and behaviour with wearable sensors

    Get PDF
    This thesis explores two lines of research in the context of sequential data and machine learning in the remote environment, i.e., outside the lab setting - using data acquired from wearable devices. Firstly, we explore Generative Adversarial Networks (GANs) as a reliable tool for time series generation, imputation and forecasting. Secondly, we investigate the applicability of novel deep learning frameworks to sequential data processing and their advantages over traditional methods. More specifically, we use our models to unlock additional insights and biomarkers in human-centric datasets. Our first research avenue concerns the generation of sequential physiological data. Access to physiological data, particularly medical data, has become heavily regulated in recent years, which has presented bottlenecks in developing computational models to assist in diagnosing and treating patients. Therefore, we explore GAN models to generate medical time series data that adhere to privacy-preserving regulations. We present our novel methods of generating and imputing synthetic, multichannel sequential medical data while complying with privacy regulations. Addressing these concerns allows for sharing and disseminating medical data and, in turn, developing clinical research in the relevant fields. Secondly, we explore novel deep learning technologies applied to human-centric sequential data to unlock further insights while addressing the idea of environmentally sustainable AI. We develop novel deep learning processing methods to estimate human activity and heart rate through convolutional networks. We also introduce our ‘time series-to-time series GAN’, which maps photoplethysmograph data to blood pressure measurements. Importantly, we denoise artefact-laden biosignal data to a competitive standard using a custom objective function and novel application of GANs. These deep learning methods help to produce nuanced biomarkers and state-of-the-art insights from human physiological data. The work laid out in this thesis provides a foundation for state-of-the-art deep learning methods for sequential data processing while keeping a keen eye on sustain- able AI

    An Interpretable Machine Vision Approach to Human Activity Recognition using Photoplethysmograph Sensor Data

    Get PDF
    The current gold standard for human activity recognition (HAR) is based on the use of cameras. However, the poor scalability of camera systems renders them impractical in pursuit of the goal of wider adoption of HAR in mobile computing contexts. Consequently, researchers instead rely on wearable sensors and in particular inertial sensors. A particularly prevalent wearable is the smart watch which due to its integrated inertial and optical sensing capabilities holds great potential for realising better HAR in a non-obtrusive way. This paper seeks to simplify the wearable approach to HAR through determining if the wrist-mounted optical sensor alone typically found in a smartwatch or similar device can be used as a useful source of data for activity recognition. The approach has the potential to eliminate the need for the inertial sensing element which would in turn reduce the cost of and complexity of smartwatches and fitness trackers. This could potentially commoditise the hardware requirements for HAR while retaining the functionality of both heart rate monitoring and activity capture all from a single optical sensor. Our approach relies on the adoption of machine vision for activity recognition based on suitably scaled plots of the optical signals. We take this approach so as to produce classifications that are easily explainable and interpretable by non-technical users. More specifically, images of photoplethysmography signal time series are used to retrain the penultimate layer of a convolutional neural network which has initially been trained on the ImageNet database. We then use the 2048 dimensional features from the penultimate layer as input to a support vector machine. Results from the experiment yielded an average classification accuracy of 92.3%. This result outperforms that of an optical and inertial sensor combined (78%) and illustrates the capability of HAR systems using...Comment: 26th AIAI Irish Conference on Artificial Intelligence and Cognitive Scienc

    Estimation of Continuous Blood Pressure from PPG via a Federated Learning Approach

    Get PDF
    Ischemic heart disease is the highest cause of mortality globally each year. This not only puts a massive strain on the lives of those affected but also on the public healthcare systems. To understand the dynamics of the healthy and unhealthy heart doctors commonly use electrocardiogram (ECG) and blood pressure (BP) readings. These methods are often quite invasive, in particular when continuous arterial blood pressure (ABP) readings are taken and not to mention very costly. Using machine learning methods we seek to develop a framework that is capable of inferring ABP from a single optical photoplethysmogram (PPG) sensor alone. We train our framework across distributed models and data sources to mimic a large-scale distributed collaborative learning experiment that could be implemented across low-cost wearables. Our time series-to-time series generative adversarial network (T2TGAN) is capable of high-quality continuous ABP generation from a PPG signal with a mean error of 2.54 mmHg and a standard deviation of 23.7 mmHg when estimating mean arterial pressure on a previously unseen, noisy, independent dataset. To our knowledge, this framework is the first example of a GAN capable of continuous ABP generation from an input PPG signal that also uses a federated learning methodology

    A machine vision approach to human activity recognition using photoplethysmograph sensor data

    Get PDF
    Human activity recognition (HAR) is an active area of research concerned with the classification of human motion. Cameras are the gold standard used in this area, but they are proven to have scalability and privacy issues. HAR studies have also been conducted with wearable devices consisting of inertial sensors. Perhaps the most common wearable, smart watches, comprising of inertial and optical sensors, allow for scalable, non-obtrusive studies. We are seeking to simplify this wearable approach further by determining if wrist-mounted optical sensing, usually used for heart rate determination, can also provide useful data for relevant activity recognition. If successful, this could eliminate the need for the inertial sensor, and so simplify the technological requirements in wearable HAR. We adopt a machine vision approach for activity recognition based on plots of the optical signals so as to produce classifications that are easily explainable and interpretable by non-technical users. Specifically, time-series images of photoplethysmography signals are used to retrain the penultimate layer of a pretrained convolutional neural network leveraging the concept of transfer learning. Our results demonstrate an average accuracy of 75.8%. This illustrates the feasibility of implementing an optical sensor-only solution for a coarse activity and heart rate monitoring system. Implementing an optical sensor only in the design of these wearables leads to a trade off in classification performance, but in turn, grants the potential to simplify the overall design of activity monitoring and classification systems in the future

    An interpretable machine vision approach to human activity recognition using photoplethysmograph sensor data

    Get PDF
    The current gold standard for human activity recognition (HAR) is based on the use of cameras. However, the poor scalability of camera systems renders them impractical in pursuit of the goal of wider adoption of HAR in mobile computing contexts. Consequently, researchers instead rely on wearable sensors and in particular inertial sensors. A particularly prevalent wearable is the smart watch which due to its integrated inertial and optical sensing capabilities holds great potential for realising better HAR in a non-obtrusive way. This paper seeks to simplify the wearable approach to HAR through determining if the wrist-mounted optical sensor alone typically found in a smartwatch or similar device can be used as a useful source of data for activity recognition. The approach has the potential to eliminate the need for the inertial sensing element which would in turn reduce the cost of and complexity of smartwatches and fitness trackers. This could potentially commoditise the hardware requirements for HAR while retaining the functionality of both heart rate monitoring and activity capture all from a single optical sensor. Our approach relies on the adoption of machine vision for activity recognition based on suitably scaled plots of the optical signals. We take this approach so as to produce classifications that are easily explainable and interpretable by non-technical users. More specifically, images of photoplethysmography signal time series are used to retrain the penultimate layer of a convolutional neural network which has initially been trained on the ImageNet database. We then use the 2048 dimensional features from the penultimate layer as input to a support vector machine. Results from the experiment yielded an average classification accuracy of 92.3\%. This result outperforms that of an optical and inertial sensor combined (78\%) and illustrates the capability of HAR systems using standalone optical sensing elements which also allows for both HAR and heart rate monitoring. Finally, we demonstrate through the use of tools from research in explainable AI how this machine vision approach lends itself to more interpretable machine learning output

    An Interpretable Machine Vision Approach to Human Activity Recognition using Photoplethysmograph Sensor Data

    Get PDF
    The current gold standard for human activity recognition (HAR) is based on the use of cameras. However, the poor scalability of camera systems renders them impractical in pursuit of the goal of wider adoption of HAR in mobile computing contexts. Consequently, researchers instead rely on wearable sensors and in particular inertial sensors. A particularly prevalent wearable is the smart watch which due to its integrated inertial and optical sensing capabilities holds great potential for realising better HAR in a non-obtrusive way. This paper seeks to simplify the wearable approach to HAR through determining if the wrist-mounted optical sensor alone typically found in a smartwatch or similar device can be used as a useful source of data for activity recognition. The approach has the potential to eliminate the need for the inertial sensing element which would in turn reduce the cost of and complexity of smartwatches and fitness trackers. This could potentially commoditise the hardware requirements for HAR while retaining the functionality of both heart rate monitoring and activity capture all from a single optical sensor. Our approach relies on the adoption of machine vision for activity recognition based on suitably scaled plots of the optical signals. We take this approach so as to produce classifications that are easily explainable and interpretable by non-technical users. More specifically, images of photoplethysmography signal time series are used to retrain the penultimate layer of a convolutional neural network which has initially been trained on the ImageNet database. We then use the 2048 dimensional features from the penultimate layer as input to a support vector machine. Results from the experiment yielded an average classification accuracy of 92.3%. This result outperforms that of an optical and inertial sensor combined (78%) and illustrates the capability of HAR systems using...Comment: 26th AIAI Irish Conference on Artificial Intelligence and Cognitive Scienc

    Generative adversarial networks in time series: a systematic literature review

    Get PDF
    Generative adversarial network (GAN) studies have grown exponentially in the past few years. Their impact has been seen mainly in the computer vision field with realistic image and video manipulation, especially generation, makingsignificantadvancements.Althoughthesecomputervisionadvanceshavegarneredmuch attention, GAN applications have diversified across disciplines such as time series and sequence generation. As a relatively new niche for GANs, fieldwork is ongoing to develop high-quality, diverse, and private time series data. In this article, we review GAN variants designed for time series related applications. We propose a classification of discrete-variant GANs and continuous-variant GANs, in which GANs deal with discrete time series and continuous time series data. Here we showcase the latest and most popular literature in this field— their architectures, results, and applications. We also provide a list of the most popular evaluation metrics and their suitability across applications. Also presented is a discussion of privacy measures for these GANs and further protections and directions for dealing with sensitive data. We aim to frame clearly and concisely the latest and state-of-the-art research in this area and their applications to real-world technologies

    CNNs for heart rate estimation and human activity recognition in wrist worn sensing applications

    Get PDF
    Wrist-worn smart devices are providing increased insights into human health, behaviour and performance through sophisticated analytics. However, battery life, device cost and sensor performance in the face of movement-related artefact present challenges which must be further addressed to see effective applications and wider adoption through commoditisation of the technology. We address these challenges by demonstrating, through using a simple optical measurement, photoplethysmography (PPG) used conventionally for heart rate detection in wrist-worn sensors, that we can provide improved heart rate and human activity recognition (HAR) simultaneously at low sample rates, without an inertial measurement unit. This simplifies hardware design and reduces costs and power budgets. We apply two deep learning pipelines, one for human activity recognition and one for heart rate estimation. HAR is achieved through the application of a visual classification approach, capable of robust performance at low sample rates. Here, transfer learning is leveraged to retrain a convolutional neural network (CNN) to distinguish characteristics of the PPG during different human activities. For heart rate estimation we use a CNN adopted for regression which maps noisy optical signals to heart rate estimates. In both cases, comparisons are made with leading conventional approaches. Our results demonstrate a low sampling frequency can achieve good performance without significant degradation of accuracy. 5 Hz and 10 Hz were shown to have 80.2% and 83.0% classification accuracy for HAR respectively. These same sampling frequencies also yielded a robust heart rate estimation which was comparative with that achieved at the more energy-intensive rate of 256 Hz
    corecore